FAR BEYOND

MAT122

Product Rule

Review

Power Rule

$$(ax^n)' = \frac{d}{dx}ax^n = nax^{n-1}$$

Exponential Derivative:

(base e)

$$(e^x)' = e^x$$

Special Cases:

$$\frac{d}{dx}x = 1$$

$$\frac{d}{dx}a = 0$$
where a is a constant

Do: differentiate $f(x) = 5x^{100} - e^x + 7\sqrt[3]{x} + 11$

Express answer with positive exponents.

Exponent Law:

$$\sqrt[n]{x} = x^{1/n}$$

$$= 500x^{99} - e^x + \frac{7}{3x^{2/3}}$$

Product Rule - Intro

When two *differentiable* functions are <u>multiplied</u>, use the **Product Rule** to take derivative:

shorthand
$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

$$[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)$$

Leibniz notation:
$$\frac{d}{dx} [f(x)g(x)] = \frac{d}{dx} f(x) \cdot g(x) + f(x) \cdot \frac{d}{dx} g(x)$$

ex. find the derivative of
$$h(x) = xe^x$$
 $g(x) = e^x$ $f(x) = x$

$$h'(x) = f'(x)g(x) + f(x)g'(x)$$

$$= 1 \cdot e^{x} + x \cdot e^{x}$$

$$= e^{x} + x e^{x}$$

build a chart of functions and their derivatives:

$$f(x) = x g(x) = e^x$$

$$f'(x) = 1 g'(x) = e^x$$

Product Rule – cont'd

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

ex. find the derivative of
$$h(x) = (x^2 + 3x) (5x^3 - 2)$$
 $f = x^2 + 3x$ $g = 5x^3 - 2$ $f' = 2x + 3$ $g' = 15x^2$

$$h'(x) = f'g + fg'$$

= $(2x+3)(5x^3-2) + (x^2+3x)(15x^2)$ ok to leave in factored form

ex. differentiate
$$f(y) = \left(\frac{1}{y^2} - 3y^4\right) \left(y + 5y^3\right)$$
 $f = \left[\frac{1}{y^2} - 3y^4\right]$ $g = y + 5y^3$ $f'(y) = \left[\left(-\frac{2}{y^3} - 12y^3\right) \left(y + 5y^3\right) + \left(\frac{1}{y^2} - 3y^4\right) \left(1 + 15y^2\right)\right]$ $f' = -2y^{-3} - 12y^3$ $g' = \left[1 + 15y^2\right]$ $g' = \left[-\frac{2}{y^3} - 12y^3\right]$

Product Rule - Do

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

Do: differentiate
$$f(x) = (4x^3 - 6x^2 + 1)(5x^4 + 7x^2 + 3x)$$

Do: find
$$f'(x)$$
: $f(x) = (x + \sqrt{x} + \sqrt[3]{x})(e^x - x^2)$

Rate of Change - Application

Product Rule

ex. The cost (in dollars) of producing x phone chargers is given by C(x) = (3x - 25)(500 - x). Find the rate at which cost is changing when 100 chargers have been produced.

Step 1: find general derivative

rate of change =
$$C'(x) = 3(500 - x) + (3x - 25)(-1)$$

$$f = 3x - 25$$
 $g = 500 - x$
 $f' = 3$ $g' = -1$

Step 2: plug 100 into derivative

$$C'(100) = 3(500-100) - (3 \cdot 100 - 25)$$

= $3(400)$ - $(300-25)$
= 1200 - 275
= $$925 / \text{charger}$